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Abstract—Coarse-grained reconfigurable arrays (CGRAs) are
promising post-Moore accelerators for scaling performance in
High-Performance Computing (HPC) and Artificial Intelligence
(AI). However, fully understanding and realizing the benefits
CGRAs bring to these demanding workloads is an open research
question. This paper highlights our past and future design-space
explorations to optimize our CGRA architecture specifically for
HPC and AI applications.

Index Terms—CGRA, HPC, AI, Architecture, Dataflow, Sys-
tolic Array

I. INTRODUCTION

Reconfigurable computing offers a middle ground between
the fixed efficiency of ASICs and the programmability of
general-purpose processors such as CPUs and GPUs. It spans
a range of architectures defined by the granularity of reconfig-
uration, from fine-grained FPGAs to coarser-grained CGRAs,
which are closer to specialized hardware.

CGRA-like architecture is not new; it has been around since
the late 90s and early 2000s, but it was overshadowed by the
rapid performance growth of general-purpose CPUs thanks to
Moore’s law and Denard’s scaling. The breakdown of Dennard
scaling in the mid-2000s led to the ”power wall,” limiting
further clock speed improvements in general-purpose CPUs.
Concurrently, emerging workloads in AI, machine learning,
and edge computing demand high parallelism and energy
efficiency beyond the capabilities of traditional processors.
CGRAs have emerged as promising domain-specific acceler-
ators.

Classical CGRAs were typically targeted for low-power
edge applications, but the rise of data-intensive workloads
requires a reassessment of CGRA architecture. The growth
of artificial intelligence has generated significant demand for
processing large datasets with specific computational patterns,
particularly dense matrix multiplications and convolutions,
as well as complex non-linear and sparse computations. In
parallel, traditional high-performance computing applications
in scientific fields require a more general-purpose computing
capability with higher floating-point performance (often FP64
precision) and the capacity to handle vast data volumes.
Modern HPC applications also increasingly incorporate AI
techniques, thus demanding more versatile architectures. Iden-
tifying optimal design-space strategies for CGRA deployment
in modern HPC plus AI environments remains an open re-
search challenge. This paper highlights our past and future

design-space explorations to optimize our CGRA architecture
specifically for HPC and AI applications.

RIKEN CGRA is a research CGRA implemented with
the CGRA-ME framework. It is designed as a modern HPC
accelerator with mixed AI and HPC usage in mind. There are
3 key design characteristics:

• Elastic stream computing model: The stream comput-
ing model is a class of dataflow computing paradigm
that strictly separates computation and memory access.
This paradigm prevents stalls in memory access from
directly affecting computations, keeping the pipeline full.
Furthermore, the elastic CGRA paradigm or dynamic
dataflow execution allows the CGRA to seamlessly han-
dle operations with variable latencies (like IO or memory
accesses) and applications with complex control flow
or synchronization requirements, common in large-scale
HPC environments.

• Floating-point and multi-precision with SIMD: High-
precision floating-point operations support is a must in
HPC environments. In contrast, AI workloads heavily
utilize mixed precision (BF16, FP16, INT8, or FP8)
for performance/efficiency and only occasionally FP32
for stability. Innovative PE design with mixed precision
support is highly desired.

• Modularity and scalability: RIKEN CGRA has a pa-
rameterized modular design with scalability in mind.
Custom tiles can be easily added. Intra-CGRA datapath
can be easily converted into AXI4-Stream or Avalon-ST
with minimal glue logic. All the external interfaces are
compatible with Avalon-MM or AXI4-Lite.

The CGRA mainly comprises of 3 types of tiles, i.e., Process-
ing Element (PE) tiles for computing, Load-Store (LS) tiles
for memory access, and Switch Block (SB) tiles for routing, as
shown in Figure 1. New type of tiles may be added for future
extension. Each tiles is typically connected in a king-style
fashion to its nearest-neighbor tiles. A daisy-chained bitstream
interface is also employed for configuration. This architecture
is defined in C++ with CGRA-ME [1], thus it is synthesizable,
highly parameterizable and can be easily extended for design
space exploration.



a. Simplified 3× 3 RIKEN
CGRA overview. b. Processing Element Tile.
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Fig. 1. RIKEN CGRA Architecture

II. CGRA DESIGN-SPACE OPTIMIZATION FOR HPC & AI

A. Intra-CGRA Interconnect Optimization

An appropriately designed intra-CGRA interconnect pro-
vides enough routability to map common HPC workload
kernels while maintaining low hardware costs. Typical AI
workloads often satisfied with simple systolic array-like in-
terconnect. We explored ADRES-style integrated mux in each
PE vs. HyCube-style interconnect with a discrete router. The
latter is far more routable, albeit with 6.3× higher resource
usage [2]; however, it is often underutilized at less than
30% connection usage under a typical HPC workload [3].
To find the balance, we evaluate various reduced connection
topologies by removing the least used connections and higher
compute density topologies [4].

B. Heterogeneous ALUs

Various HPC kernels often require transcendental functions,
such as square root and exponential. However, Coarse-Grained
Reconfigurable Arrays (CGRAs) usually do not directly imple-
ment such operations but instead rely on approximations (e.g.,
based on lookup tables or Taylor expansion) that can nega-
tively impact the result precision or the number of Arithmetic
Logical Units (ALUs)/Processing Elements (PEs) required.
For this reason, we provide our CGRA with a heterogeneous
set of ALUs, namely BASIC, COMPLEX, and FULL. The
first ALU implements basic logical, integer, and floating-point
operations, while the second features transcendental functions
only. Finally, the last ALU groups the previous ones. As the
number and complexity of operations increase, the required
hardware resources also increase. We synthesized three 4×4
CGRAs on 3-nm FinFET, each implementing a different type
of ALU. The results indicate a slight increase in resources
usage as the ALU becomes more complex. Consequently, in-
stead of using just one type of ALU, we combined them within
a heterogeneous CGRA and investigate a proper balance to
reduce resource usage and, potentially, power consumption [5].

C. Systolic-Array Style Execution on CGRA

AI workload is dominated by GEMM operations, which
involve many floating-point calculations and memory accesses,
creating a significant computational burden on general-purpose

processors. Specialized hardware accelerators have been de-
veloped to address this challenge, with systolic arrays (SAs)
emerging as a prominent architecture for GEMM acceleration.
Compared to SAs, CGRA offers higher flexibility and pro-
grammability as users can map arbitrary DFG into the CGRA.
However, the flexibility costs a higher logic complexity, thus
resulting in more area usage in silicon. Optimization target
for AI often differs from that for HPC. Moreover, mapping
an arbitrary DFG does not guarantee 100% utilization of the
available PEs, reducing the efficiency further compared to a
simple systolic array. In our latest effort, we proposed several
changes to allow systolic array style execution on CGRA,
i.e., extra systolic style registers for local data storage on
each PE, which is commonly found in systolic array style
computation, and defining a DSL to efficiently contruct the
mapping primitives that can be placed easily into the CGRA
utilizing maximum number of available PEs [6].
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