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Abstract
Silent data corruptions (SDCs) due to defective silicon affects data-
intensive computations in all computing units: CPUs, GPUs, AI
accelerators (AIAs). Accurate measurement of the scale of the prob-
lem is necessary to guide hardware or softwaremitigation strategies.
The design space of systolic-array based AIAs is very broad and
every piece of the system design matters for the rate and severity of
SDCs in these data-parallel architectures. We describe our complete
modeling framework for the exploration of the design space of pro-
grammable AI accelerators; it flexibly models all necessary circuit,
microarchitecture, architecture, and software layers of abstraction
that determine how often and in which way silicon defects in AIAs
generate SDCs in AI workloads. Such a framework can diligently
identify the reliability hotspots of the accelerator design and thus
guide informed design decisions for mitigation.
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1 Introduction
Artificial Intelligence (AI) drives innovation across fields like health-
care, autonomous systems, natural language processing, and scien-
tific research, but the growing computational demands, especially
in deep learning, have outpaced conventional computing architec-
tures. Specialized hardware accelerators have emerged to optimize
AI workloads. While traditionally performance-focused, reliabil-
ity—particularly Silent Data Corruptions (SDCs) [6]—has become
equally critical for large-scale deployments. Hyperscalers (Meta,
Google, Alibaba) report widespread SDCs in CPUs and AI accelera-
tors, with defect-induced errors arising from manufacturing, aging,
variability, or environmental factors. CPU studies report SDC rates
of around one core per thousand, similarly observed in accelerators.
Although extensive research has examined SDC estimation and
detection for CPUs, AI accelerators’ unique data-flow architectures
and workloads demand tailored solutions. Early-stage accelerator
modeling is essential to evaluate performance and reliability quickly
and accurately. Microarchitectural simulators effectively balance
accuracy and throughput, providing detailed insights into compute
units, memory hierarchies, and dataflows. In contrast, software-
based fault injection lacks hardware realism, and RTL/gate-level
simulations are accurate but prohibitively slow.

We introduce an open-source framework built on gem5, support-
ing comprehensive full-stack modeling and reliability assessment of
programmable systolic-array-based AI accelerators. Our approach
integrates statistical fault injection targeting SRAMs, registers, and
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functional units (covering >90% accelerator area), along with effi-
cient gate-level fault modeling embedded directly into gem5. Key
contributions include: (i) full-stack AI accelerator modeling with
cycle-level accuracy, (ii) comprehensive fault injection across mul-
tiple fault types, (iii) extensive configurability supporting diverse
systolic array sizes, dataflows, datatypes, and memory hierarchies,
(v) direct evaluation of performance-reliability tradeoffs, (vi) ability
to gather microarchitectural insights guiding accelerator optimiza-
tion, and (vii) observation ofMLmodel behavior under various fault
conditions. Figure 1 compares our modeled system components
with state-of-the-art tools [4, 5, 7, 9–12].

Figure 1: Our modeled compute stack vs. the State-of-the-Art.
Many important pieces are missing (red) from existing tools
with our work filling all the gaps.

2 Background
2.1 Defects, Faults, and Errors
Hardware defects in AI accelerators originate from manufacturing
issues, aging, or environmental conditions, manifesting as faults.
These faults can be classified into three types: (i) transient, tempo-
rary disruptions such as particle strikes; (ii) intermittent, sporadic
faults from marginal defects or thermal conditions; and (iii) perma-
nent, resulting from irreversible damage. Faults may produce errors
like Silent Data Corruptions (SDCs), which degrade neural network
accuracy without detection, orDetected Unrecoverable Errors (DUEs),
which trigger immediate disruptions but allow diagnosis.

2.2 Reliability Metrics for AI Accelerators
Reliability is commonly assessed using the Architectural Vulner-
ability Factor (AVF), quantifying the likelihood a fault will cause
a visible error based on microarchitecture, software, and inputs.
Given the data-flow nature of AI accelerators, injected faults pri-
marily manifest as SDCs. We focus on four distinct SDC metrics:
(i) Top1-Class SDC, faults changing the predicted top class; (ii)
Top1-Confidence SDC, altering confidence scores of the top pre-
diction; (iii) Top5-Class SDC, faults affecting any of the top five
predicted classes; and (iv) Top5-Confidence SDC, faults altering
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confidence scores among the top five predictions. Our framework
flexibly supports these metrics, capturing SDCs across all modeled
accelerator components.

3 Methodology
For neural network modeling and training, we use TensorFlow,
with inference executed through TensorFlow Lite. We implement
a custom TensorFlow Lite delegate to seamlessly offload major
operations—fully connected, convolutional, and batch matrix mul-
tiplication layers—onto the modeled AI accelerator, significantly
improving simulation efficiency and accuracy.

Our framework is built upon gem5, a widely used cycle-level mi-
croarchitectural simulator. Our modeled SoC architecture (Figure 2)
employs memory-mapped I/O (MMIO) supported through a heavily
modified version of the gem5-accel framework [13], incorporating
a custom DMA engine with virtual addressing capabilities. Custom
drivers abstract hardware details and facilitate software integration.

Figure 2: Architecture of the modeled System-on-Chip. Ar-
rows show the different locations in the memory hierarchy
where the accelerator can be connected.

Our accelerator (Figure 2) is centered around a configurable
systolic array supporting multiple dataflows (Weight-Stationary,
Input-Stationary, Output-Stationary [8]) and arbitrary datatypes. It
includes buffers, scratchpad memories, a transposer, a DMA engine,
and a control module responsible for dataflow-specific operations.
Further details on systolic array dataflows, tiling strategies, and
datatype support are described extensively in prior work [8]. Relia-
bility is assessed through statistical fault injection (SFI) targeting
SRAMs, registers, and functional units, using methodologies de-
scribed in prior CPU and GPU reliability studies (e.g [3]). Gate-level
faults in functional units are efficiently modeled within gem5, fol-
lowing techniques detailed in [1, 2].

4 Results
Due to space constraints, this section focuses exclusively on the
impact of permanent faults on accelerator reliability. We present the
Top-1 and Top-5 class PSDC for three accelerator components: Pro-
cessing Element (PE) registers, Weights Scratchpad Memory (SPM),
and PE Multiply-Accumulate Functional Units (FUs), across several
neural network models. Figure 3 shows PSDC of these components
for different accelerator sizes (𝑁 ) and dataflows.

Figure 4 provides a breakdown of PSDC for each individual
workload analyzed. Our evaluation covers four datasets (CIFAR-10,
CIFAR-100, MNIST, and Fashion-MNIST) and six distinct neural
network architectures. However, it is important to note that the
results presented here represent only a small subset of the extensive

design-space exploration possibilities enabled by our framework,
highlighting its capability to examine diverse accelerator configu-
rations comprehensively.
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Figure 3: Top1-Class (dark) and Top5-Class (light) PSDC of PE
Registers, Weights SPM and FUs for different values of N and
dataflow, averaged across workloads.
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Figure 4: Top1-Class (dark) and Top5-Class (light) PSDC for
each benchmark due to permanent faults in PE registers,
Weights SPM and FUs aggregated for all values of N, dataflow.
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