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Abstract
Generative AI (GenAI) models deployed on monolithic chips face
scalability, power, and environmental challenges. As the usage of
GenAI grows, its high carbon footprint poses environmental con-
cerns. In this work, we propose SGen, a framework for sustainable
inference using chiplet-based in-memory computing (IMC) architec-
tures. SGen selects mapping strategies dynamically and schedules
the inference based on the availability of renewable energy re-
sources and latency requirements. By utilizing chiplet modularity,
3D integration, and carbon-aware scheduling, SGen significantly
lowers environmental impact, making GenAI more sustainable at
scale.
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1 Introduction
Generative AI (GenAI) is rapidly expanding across various compu-
tational domains and is expected to be a center for a wide range of
emerging applications. However, as sequence length grows to meet
ever-escalating user demands, the corresponding GenAI models
scale in complexity and size, increasing the resource requirements
for deployment. Realizing such large GenAImodels on conventional
monolithic silicon incurs prohibitive area overheads, reduced fabri-
cation yield, and limits scalability. To overcome these architectural
bottlenecks, chiplet-based design paradigms are being pursued for
GenAI workloads [8]. The use of chiplets introduces modularity
and scalability, enabling hardware platforms to adapt more flexibly
to increasing model dimensions. Moreover, the reduced die size of
chiplets enhances manufacturing yield and significantly shortens
time-to-market. Chiplet-based systems also demonstrate a lower
carbon footprint (CFP) compared to their monolithic counterparts,
making them indispensable for sustainable GenAI [11].

An emerging and critical dimension of GenAI is its impact on the
environment. The conventional reliance on power-hungry GPUs
during GenAI inference incurs substantial energy consumption and
cooling demands [13]. As GenAI systems become deeply embed-
ded in daily life, the carbon emissions associated with it assume
higher importance. The environmental footprint of GenAI has two
categories: embodied CFP, which arises from the materials, chem-
icals, and energy expended during integrated circuit fabrication;
and operational CFP, which accounts for the emissions generated
during runtime execution. While chiplet-based architectures of-
fer a substantial reduction in embodied CFP due to their smaller,
modular design, addressing the environmental cost of GenAI at
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scale demands a concerted effort to minimize both embodied and
operational CFP.

A promising strategy for sustainable GenAI is the deployment
of IMC within chiplet-based architectures, commonly referred to
as chiplet-based IMC systems [5]. By reducing data movement be-
tween memory and compute units, IMC offers an energy-efficient
and high-throughput alternative to traditional von Neumann archi-
tectures. Coupled with reduced silicon area requirements, IMC is
more sustainable than conventional hardware paradigms [2]. The
adoption of 3D integration in chiplet-based IMC architectures fur-
ther improves performance by minimizing interconnect latency
compared to 2.5D implementations [12]. However, the increased
spatial density of chiplets in 3D stacks imposes thermal manage-
ment challenges, as the limited vertical heat dissipation introduces
localized hotspots [9]. When mapping GenAI workloads onto such
thermally constrained architectures, rising temperatures increase
cooling demands. Therefore, there is a need to co-optimize latency
and operational CFP in the architectural design of chiplet-based
IMC systems for GenAI deployment.

With the above factors in mind, we propose SGen for sustainable
GenAI inference for chiplet-based IMC architectures. SGen takes
the type of inference and type of power source (renewable/non-
renewable) into account and schedules the GenAI model to reduce
operational CFP incurred during inference. It also dynamically
decides the mapping strategy. Here, the mapping strategy refers to
the mapping of the layers of the GenAI model with the IMC tiles.
We quantify the effectiveness of SGen using a Vision Transformer
[3] with the Imagenet dataset, containing over 86M parameters.

2 Background
2.1 Online and Offline Inference
The inference for GenAI models can be classified into online and
offline inference. In online inference, the model is expected to gener-
ate outputs immediately in response to user inputs. This inference
is used in applications like chatbots and search suggestions. Offline
inference, meanwhile, refers to the processing of inference requests
that are not time-sensitive and can tolerate higher latency. Using
it allows for the accumulation and batch processing of requests.
Offline inference can constitute up to 55% of the total workload in
some cases [6]. Overall, while the latency of the system is critical
in online inference, it is not a major factor in offline inference.

2.2 Mapping Strategies
In this work, we consider twomapping strategies. The first mapping
strategy (Mapping 1) uses the DNN weight and mapping method
[5]. The top-to-bottom approach allocates weights onto the IMC
architecture’s hardware resources, structured hierarchically into
tiers, tiles, processing elements, and crossbars. This approach is
aimed at reducing the inter-chiplet data movement, which results
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Figure 1: Block diagram of Carbon Aware Scheduling

in higher performance. A side effect of this mapping strategy is the
high intra-chiplet movement. While this mapping reduces the inter-
chiplet movement, the higher intra-chiplet movement increases
the peak temperature. This is more pronounced at the lowest layer
of the chiplet. The second mapping strategy (Mapping 2) uses a
thermal-aware task mapping algorithm [10]. This strategy aims to
reduce the peak temperature at the cost of mapping at lower per-
formance. This reduces the operational carbon incurred for cooling.
Therefore, while Mapping 1 focuses on performance, Mapping 2
focuses on operational carbon.

3 Sustainable Inference using Carbon Aware
Scheduling

Fig. 1 shows the block diagram of the proposed carbon-aware sched-
uling. During the process, the scheduler first determines the kind of
inference. For latency-sensitive online inference, the processor uses
Mapping 1 to reduce the latency incurred during inference. The
mapping is done irrespective of the kind of energy source available
during the process. This ensures that the critical tasks of users are
not delayed. However, this results in high power consumption due
to the cooling requirements of the server.

For offline inference with relaxed latency requirements, the
scheduler first checks for renewable energy resource availability
within the time constraints of the inference. It aims to schedule the
batches during periods of peak renewable energy availability to
reduce operational CFP. For instance, wind energy generation often
peaks during the late afternoon to evening hours [7]. Additionally,
the scheduler uses Mapping 2, which has a lower peak tempera-
ture compared to Mapping 1. The use of both renewable energy
and thermal aware mapping reduces operational CFP considerably.
However, it may happen that sufficient renewable resources are
not available within the required timing constraints for offline in-
ference. In that case, the scheduler uses only Mapping 2 with the
existing non-renewable resources. While the operational CFP might
not reduce a lot due to the use of non-renewable resources, it is still
significant. This is because the offline inference is performed multi-
ple times over the chip’s lifetime. Therefore, even a slight reduction
in operational CFP leads to a noticeable cumulative impact.

4 Results
We demonstrate our results for a vision transformer using the
ImageNet dataset. We first obtain the power, energy, and latency
using the HISIM simulator [12]. We choose a configuration of 3D
packaging with 3 tiers. Each tier contains 49 tiles, and each tile
contains 36 processing elements. Each processing elements consist
of an RRAM array of size 1024×1024 with IMC infrastructure. Table
1 shows the various parameters of the two mapping algorithms for

Mapping Latency (𝜇𝑠) Power (W) Energy (mJ) Peak Temp (K)
Mapping 1 15.8 3.21 35.73 367.77
Mapping 2 17.4 2.92 34.62 313.95

Table 1: Output parameters for mapping strategies

Figure 2: Operational CFP for various sources

one inference of the vision transformer. Mapping 1 exhibits lower
latency, while Mapping 2 shows lower power, energy, and peak
temperature.

To calculate the operational CFP of the server, both the computa-
tional power and the power required for cooling must be considered.
As of 2022, the average power usage effectiveness of the IT indus-
try stood at 1.55 [1]. This indicates that for every joule of energy
consumed by the server, an additional 0.55 J of energy is consumed
for cooling only. Thus, we scale the server energy values reported
in Table 1 by a factor of 1.55 to account for total energy consump-
tion. After converting the energy consumed into kilowatt hours,
we use the carbon intensity of the electricity source to obtain the
operational CFP. The values of carbon intensity of energy sources
are obtained from the work ACT [4].

The values of operational CFP for various sources are shown
in Fig. 2. The value of operational CFP is obtained for a single
inference of the vision transformer. When SGen operates using
renewable energy, the reduction in operational CFP ranges from
76.9× (from coal to wind) to 12.3× (from gas to solar). When SGen
relies on fallback using non-renewable energy, the reduction in
operational CFP for both coal-based and gas-based inference is
3.11%. This difference in operational CFP is less due to the smaller
difference in energy between the two mapping strategies (in order
of mJ). The higher latency of Mapping 2 counters the power savings
obtained from it, reducing the difference between it and Mapping
1. More efficient mapping strategies are the need of the hour to
enable sustainable inference.

5 Conclusion
Generative AI’s environmental impact poses a challenge as mod-
els grow in complexity. Addressing both performance and CFP is
essential to ensure the long-term viability of the models. In this
work, we introduced SGen, a carbon-aware inference framework
that combines chiplet-based IMC architectures with carbon-aware
scheduling and mapping strategies. By considering latency sensi-
tivity and energy source availability, SGen successfully balances
computational efficiency with environmental responsibility. Future
works can explore more sustainable mapping strategies for GenAI
inference.
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